
Limits of detection in acute phase protein biomarkers affect 
inflammation correction of serum ferritin for quantifying iron 
status among school-age and preschool-age children and 
reproductive-age women

Lucas Gosdin,
Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control 
and Prevention

Andrea J. Sharma,
Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control 
and Prevention

Parminder S. Suchdev,
Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control 
and Prevention

Hubert Department of Global Health, Rollins School of Public Heath, Emory University

Maria Elena Jefferds,
Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control 
and Prevention

Melissa F. Young,
Hubert Department of Global Health, Rollins School of Public Heath, Emory University

O. Yaw Addo
Nutrition Branch, Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control 
and Prevention

Abstract

Background: Standardized practices are needed in the analysis of inflammation biomarker 

values outside limits of detection (LOD) when used for inflammation correction of nutritional 

biomarkers.

Objective: We assessed the direction and extent to which serum C-reactive protein (CRP) and 

alpha-1-acid-glycoprotein (AGP) values outside LODs (<0.05 mg/L and >4.0 g/L, respectively) 
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affect inflammation regression correction of serum ferritin and compared approaches to addressing 

such values when estimating inflammation-adjusted ferritin and iron deficiency (ID).

Methods: Examined 29 cross-sectional datasets from 7 countries with reproductive-age women 

(15–49y) (n=12,944), preschool-age children (6–59m) (n=18,208) and school-age children (6–

14y) (n=4,625). For each dataset, we compared 6 analytic approaches for addressing CRP <LOD: 

listwise deletion, single imputation (lower, middle, or upper bound; LOD/√2; random number), 

with multiple imputation (MI). For each approach, inflammation-adjusted ferritin and ID using 

BRINDA regression correction were estimated. We calculated deviance of each estimate from that 

given by MI within each dataset and performed fixed effects multivariate meta-regression with 

analytic approach as moderator to compare the reliability of each approach to MI.

Results: Across datasets, observations outside LOD ranged from 0.0 to 35.0% of CRP values 

and 0.0 to 2.5% of AGP values. Pooled deviance estimates for mean ferritin (μg/L) and ID 

(percentage points) were: listwise deletion −0.46 (95%CI: −0.76, −0.16) and 0.14 (−0.43, 0.72), 

lower bound 0.45 (0.14, 0.76) and −0.36 (−0.91, 0.20), middle bound −0.21 (−0.51, 0.09) and 0.22 

(−0.34, 0.79), LOD/√(2) −0.26 (−0.57, 0.04) and 0.25 (−0.31, 0.81), upper bound −0.31 (−0.61, 

−0.01) and 0.30 (−0.27, 0.86), and random number −0.08 (−0.38, 0.22) and 0.11 (−0.46, 0.67). 

There was moderation by approach in the ferritin model (p<0.001).

Conclusions: Findings demonstrate the need for standardized analyses of inflammation 

biomarker values outside LODs and suggest that random number single imputation may be a 

reliable and feasible alternative to MI for CRP <LOD.
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Background

Iron deficiency is a cause of an estimated 30 million disability-adjusted life-years (1), 

and accurate quantification of the condition is needed to design and evaluate population 

interventions to address it. Biomarkers of iron status including serum ferritin and soluble 

transferrin receptor (sTfR) are influenced by systemic inflammation (2), which can lead to 

inaccurate identification of iron deficiency. For example, Ferritin concentration increases 

in the presence of inflammation resulting in an underestimation of iron deficiency in both 

individuals and populations. Several methods have been used to account for the influence 

of inflammation on ferritin for defining iron deficiency. One approach is to raise ferritin 

cut-points when infection or inflammation are present in individuals (3). In settings with 

suspected or known infection or inflammation, concurrent measurement of ferritin with 

C-reactive protein (CRP) and alpha-1-acid glycoprotein (AGP) is recommended to adjust 

for inflammation using one of a variety of methods including raising fixed ferritin cut-

points, excluding persons with systemic inflammation, or applying arithmetic or regression 

correction factors based on CRP and AGP to ferritin values (3).

The regression correction approach developed by the Biomarkers Reflecting Inflammation 

and Nutritional Determinants of Anemia (BRINDA) Project has become a commonly used 
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method of adjusting ferritin for inflammation in population-based surveys. The BRINDA 

approach can simultaneously account for CRP, a marker of acute infection, and AGP, a 

marker of chronic infection or convalescence, and accounts for the effects of inflammation 

at the full range of measured CRP and AGP concentrations (2, 4). The simplified BRINDA 

regression equation follows:

Ferritinadjusted = Ferritinunadjusted − β1 CRPobserved − CRPreference − β2 AGPobserved − AGPreference ,

where CRPreference is 0.10 mg/L for preschool-age children (PSC) or 0.16 mg/L for 

nonpregnant women of reproductive age (WRA) and AGPreference is 0.59 g/L for PSC 

or 0.54 g/L for WRA or the maximum values of the lowest decile of CRP and AGP, 

respectively, within a population (5). For school-age children (SAC) there is no external 

reference, due to limited numbers of surveys compiled by the BRINDA working group, and 

thus the lowest decile within a survey is used. The references values for CRP and AGP 

represent an apparently healthy population with no inflammation, and ferritin levels at or 

below these values within a sample are not adjusted for inflammation.

A unique requirement for the BRINDA approach is continuous measures of inflammation. 

However, biological assays are rarely without limits of detection (LOD), the minimum 

or maximum concentration distinguishable from “analytical noise”, which censor values 

outside these limits (6). For example, a commonly used and cost-effective sandwich 

enzyme-linked immunosorbent assay (ELISA) from the VitMin Lab (Willstaett, Germany) 

(7) reports a lower LOD for CRP of 0.05 mg/L and an upper LOD for AGP of 4.0 g/L 

at the time of this analysis [Personal communication, Juergen Georg Erhardt, VitMin Lab 

(Willstaett, Germany)] Until 2018, the practice of this lab was to report measured values 

down to and including zero. Analysts, therefore, decide how to account for imprecision at 

the lowest concentrations of CRP.

O’Callaghan and Roth recently called for standardization of nutrition biomarker data, 

highlighted inconsistencies in laboratory practices and reporting in nutrition studies and 

pointed to the potential for non-negligible effects of variable LODs (8). Even when using 

identical laboratory practices and LODs, researchers must decide how to treat values outside 

limits of detection, especially when excluding such values from analysis has the potential 

to bias results (9). In the case of CRP, for example, excluding values below the lower LOD 

means excluding the “least inflamed” individuals from estimates of inflammation-adjusted 

ferritin and the prevalence of iron deficiency. Thus, excluding values outside limits of 

detection (listwise deletion) may be problematic and imputation methods may be more 

useful.

Some common single imputation methods for values less than the LOD are using the lower 

bound (zero), middle bound (half LOD), the LOD divided by the square root of 2, upper 

bound (LOD), and a constrained random number. Imputing values exceeding upper LOD is 

less common (10). Multiple imputation is considered the standard for addressing missing 

data (9), but it relies on various assumptions about missingness and requires a high level of 

technical capacity.
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Our study was guided by two objectives: 1) describe how and to what extent CRP and AGP 

values outside LODs affect regression correction of ferritin for inflammation and 2) compare 

analytic methods of addressing LOD values in estimating inflammation-adjusted ferritin and 

iron deficiency.

Methods

Data Sources

We focused on household nutrition surveys conducted in low- and middle-income countries 

with technical assistance from the Centers for Disease Control and Prevention’s (CDC) 

International Micronutrient Malnutrition Prevention and Control team during the previous 

10 years. To limit variation in laboratory methods and because it is the preferred assay in 

low-resource settings which often have a high burden of inflammation, we focused on 16 

surveys with data from the VitMin Lab (Willstaett, Germany): 9 surveys had data from 

WRA (n=12,944), 15 had PSC (n=18,208), and 5 had SAC (n=4,625) (Table 1). Eight of 

the surveys were nationally representative, and eight were part of population-based program 

evaluations. Details of each survey are reported elsewhere (11–25). All surveys received 

ethical approval in their respective countries and were conducted in line with their ethical 

standards. The present secondary analysis used deidentified datasets with permission from 

partner institutions within each included country and CDC considered it public health 

practice and nonhuman subjects research and exempt from IRB review.

Laboratory Measures

VitMin Lab’s combination sandwich ELISA technique concurrently measures ferritin, 

retinol-binding protein, sTfR, CRP, and AGP from serum or plasma (7). This assay produces 

results for CRP with a lower LOD of <0.05 mg/L (no upper LOD) and results for AGP 

with an upper LOD of >4.0 g/L (no lower LOD). We focused the present analysis on ferritin 

because it is the recommended biomarker for assessing population iron deficiency and is a 

sensitive measure of iron stores.

Statistical Analyses

For each survey and by population group, basic characteristics including age, sex, and 

malaria status were presented as median (minimum, maximum) or percent. Within each 

survey and population group, we also examined the proportion (%) of CRP and AGP 

values falling outside LODs and the proportion exceeding commonly used cut-points for 

inflammation (CRP> 5 mg/L and AGP >1 g/L). Because of the very low proportion of AGP 

observations greater than the LOD (Table 1), we imputed the LOD value (4.0 g/L) for these 

cases and focused primarily on CRP. We examined seven candidate analytic approaches for 

addressing the left censored CRP values. The first analytic approach was listwise deletion 

defined as using only a sub-sample of observations with CRP ≥ 0.05 mg/L in formulaic 

analysis. The following five approaches used single imputation: lower bound (0.0 imputed), 

middle bound (0.025 imputed), LOD/√2 (0.354 imputed), upper bound (0.05 imputed), and 

a uniform random number between 0.0 and 0.05 imputed once where values were <0.05 

mg/L. For the final approach, we used multiple imputation by monotone method modeled on 
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AGP and constrained by 0.0 and 0.05 with 100 iterations (26–28). Multiple imputation was 

considered the gold standard approach.

We calculated inflammation-adjusted ferritin and iron deficiency (WRA and SAC: ferritin 

<15 μg/L, PSC: ferritin <12 μg/L) using the BRINDA method for each of the seven 

analytic approaches (3). For the multiple imputation approach, we combined results from 

each imputation using PROC MIANALYZE (26). To inform how values of CRP less than 

the lower LOD (CRP <LOD) affect regression correction for inflammation, we examined 

differences between approaches in three components of the BRINDA regression equation: 

1) the lowest decile of CRP for populations without an external reference decile (school 

aged children), 2) ß-value of CRP, 3) and ß-value of AGP. Since the BRINDA inflammation 

correction method is based on a log e scale (of ferritin, CRP and AGP), ß-values were 

exponentiated and interpreted as additive percent change in expected geometric mean ferritin 

per 1 percent increase in CRP and AGP concentration. For surveys employing a multi-stage 

sampling design, complex survey procedures were used to appropriately adjust standard 

errors (via Taylor series) and sampling weights were applied.

To understand the extent to which CRP <LOD biases estimates of inflammation-adjusted 

ferritin and iron deficiency (ID), we calculated the deviance of each approach and conducted 

a multivariate meta-analysis. Deviance was calculated by subtracting the estimate of ferritin 

or ID from the estimate given by multiple imputation within each survey and population 

group. Each analytic method (listwise, lower bound, etc.) chosen is a qualitative fixed 

effect with respect to the calculated point estimates (for ID, or mean ferritin concentration) 

within a survey and population group. Unlike univariate meta-analysis of only effect sizes, 

in our multi-survey effect size and multi-LOD method analyses, each candidate analytic 

approach was modeled as a moderator. This ensures that the pooled estimates (grand 

intercept of the meta-regression) are method-specific and based on independent constituent 

surveys estimates (29, 30). We also created forest plots to compare the pooled estimates and 

reliability of each approach relative to a multiple imputation referent point estimate within 

each method. We tested for differences in the pooled estimates of the subgroups using a 

Q-test for moderators (29). In this analysis, consistency is defined as an approach-specific 

pooled estimate having a low deviance from the from the multiple imputation approach 

and reliability is defined by how similar individual surveys’ (with their inherent proportion 

CRP <LOD) deviance estimates are within an analytic approach. The meta-analysis was 

conducted in R 4.0.2 (The R Foundation for Statistical Computing) and all other analyses 

were conducted in SAS 9.4 (SAS Institute, Cary, NC).

Results

Table 1 shows the age, sex, malaria status, proportion exceeding cut-points for inflammation, 

and proportion outside LODs for each marker of systemic inflammation within each survey 

and population group. Among the 9 surveys of WRA, the proportion of CRP <LOD was 

<1% for 4, 1–5% for 3, and >10% for 2 surveys, and the proportion of CRP >5 mg/L ranged 

from 4.4 to 22.0%. Among the 15 surveys of PSC, the proportion of CRP <LOD was <1% 

for 5, 1–5% for 9, and >10% for 1 survey, and the proportion of CRP>5 mg/L ranged from 

11.4 to 43.1%. Among the 5 surveys of SAC, the proportion of CRP <LOD was 1–5% for 
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3, and >10% for 2 surveys, and the proportion of CRP>5 mg/L ranged from 2.3 to 18.0%. 

Of the 29 survey populations, 19 had no values of AGP greater than the upper LOD, 7 

had a proportion <0.5%, and 3 had 1.6–2.5% of AGP values less than the upper LOD. The 

proportion of AGP >1 g/L ranged from 5.2 to 63.5% within the 29 datasets.

Supplementary Table 1 shows three components of interest in the BRINDA regression 

equation. For WRA and PSC, the reference deciles are unchanged under differing 

approaches for CRP <LOD because external deciles were used as recommended by the 

BRINDA project. However, when no external decile is used, as is the case for SAC, 

the reference decile can be affected by the method of choice for dealing with values of 

CRP <LOD. In all surveys with SAC, listwise deletion changed the reference decile since 

observations at the lower end of the distribution of CRP were deleted. In the two surveys 

with >10% of CRP <LOD, Ghana and Nepal, the reference decile depended directly on the 

<LOD values imputed.

For all population groups, the regression slope of the relationship of CRP to ferritin, adjusted 

for AGP, was increased for listwise deletion, and all single imputation approaches except for 

lower bound imputation as compared to multiple imputation. The differences in the slope of 

the relationship of AGP to ferritin were less consistent; however, it is notable that changing 

even a small proportion of the values at the lowest end of the distribution of CRP also 

changed the adjusted relationship between AGP and ferritin. For example, in the survey of 

Guatemalan WRA in 2018/19, the weakly positive relationship between AGP and ferritin 

when using lower bound imputation (ß=1.11, increase of 11% from expected mean ferritin) 

effectively disappears when 11.6% of CRP <LOD are removed from the analysis using 

listwise deletion (ß=0.99, decrease of 1%). Another example of the effect of CRP values 

on AGP is more pronounced among the PSC from the Democratic Republic of the Congo, 

ranging from ß=4.34 (an excess additive increase of 334%) for lower bound imputation to 

ß=3.69 (additive increase of 269%) for listwise deletion despite there being only 2.3% of 

CRP <LOD. Percent change in the slope of CRP and AGP tended to be higher in datasets 

with a higher burden of inflammation, a higher proportion of CRP <LOD, and populations 

without an external reference decile (SAC).

Figure 1 summarizes the pooled deviance (represented by polygons) and reliability of 

each approach in estimating inflammation-adjusted serum ferritin concentration. Along the 

left y-axis are each survey labeled by the proportion of CRP <LOD, and the x-axis is 

the deviance of the estimate of inflammation-adjusted ferritin from the estimate given by 

multiple imputation (0 reference line) within each survey and population group in μg/L. 

The right y-axis provides information about the population group of each survey. The 

pooled estimate for listwise deletion had a significantly lower mean ferritin by an average 

of −0.46 μg/L (95% CI: −0.76, −0.16) as compared to multiple imputation. The reliability 

of listwise deletion was low as evidenced by how point estimates are dotted inconsistently 

around the vertical reference line. The pooled estimate of mean ferritin was significantly 

higher for lower bound imputation at a deviance of +0.45 μg/L (0.14, 0.76). The reliability 

of lower bound imputation was low with individual survey estimates significantly higher 

and lower than multiple imputation. Middle bound and LOD/√2 imputation resulted in 

pooled estimates somewhat lower than multiple imputation with a deviance of −0.21 (−0.51, 
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0.09) and −0.26 (−0.57, 0.04), respectively, and their estimates were reliable for WRA 

and PSC but not SAC. Upper bound imputation yielded estimates of inflammation-adjusted 

ferritin that were significantly lower than multiple imputation on average. Random number 

imputation yielded a pooled estimate with a deviance of −0.08 μg/L (−0.38, 0.22) from 

multiple imputation, making it the most consistent and reliable approach. There was 

significant moderation by approach (p<.001). Across all approaches, reliability of ferritin 

estimates tended to decrease as the proportion of CRP <LOD increased.

Figure 2 shows complementary forest plots with estimates of inflammation-adjusted iron 

deficiency in percentage points (p.p.). The pooled estimate for listwise deletion did not 

deviate significantly from multiple imputation; however, this method yielded unreliable 

results, at its highest significantly overestimating iron deficiency by 4.7 p.p. and its lowest 

underestimating by 2.7 p.p. For example, among preschool-age children in the Democratic 

Republic of Congo, the prevalence of iron deficiency was 61.0% after adjusting for the 

high levels of inflammation in the population under multiple imputation of CRP<LOD. 

Though only 0.2% of CRP values are <LOD, the prevalence rises further to 65.7% when 

those left-censored observations are dropped under listwise deletion rather than imputed: 

a 7.7 percent difference (data not shown). In another example among school-age children 

in Nepal, the prevalence of iron deficiency was 8.5% after adjusting for relatively low 

levels of inflammation in the population under multiple imputation of CRP<LOD. In this 

dataset, 10.4% of CRP values are <LOD, and the prevalence falls to 5.8% when those 

left-censored observations are dropped under listwise deletion rather than imputed: a 31.8 

percent difference (data not shown). The pooled estimate for lower bound imputation also 

did not differ significantly from multiple imputation, though this approach underestimated 

iron deficiency as compared to multiple imputation. The pooled estimate for middle bound 

imputation did not differ significantly from multiple imputation [0.22 (−0.34, 0.79)] and 

reliably yielded estimates of iron deficiency within 1 p.p. of multiple imputation. LOD/√2 

was similar to middle bound though slightly less compared to multiple imputation and 

slightly less reliable [0.25 (−0.31, 0.81)]. Though not significantly different, upper bound 

imputation overestimated the prevalence of inflammation-adjusted iron deficiency compared 

to multiple imputation. Random number imputation yielded the pooled estimate nearest 

multiple imputation [0.11 (−0.46, 0.67)], and all estimates had a low deviance indicating 

high reliability. The test for differences by approach failed to reject the null hypothesis of 

homogeneity of subgroups (p=0.61). Reliability tended to decrease as the proportion of CRP 

<LOD increased for all approaches though less pronounced with middle bound, LOD/√2, 

and random number imputation.

Discussion

The results of this study provide additional evidence of the need to standardize practices in 

the treatment of biomarker values outside LODs. Our data showed the need was greater for 

CRP than AGP. Though the proportion of observations exceeding the upper LOD of AGP 

in the examined datasets was very low, further study may be necessary to determine best 

approaches for settings with higher AGP when sample dilution is not appropriate. Though 

adoption of more sensitive laboratory analyses may reduce the proportion of CRP <LOD, 

all analyses will have LOD with which to contend (31, 32). This laboratory limitation may 
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cause misclassification of inflammation-adjusted iron deficiency when appropriate measures 

are not taken to account for this left-censoring. This may lead to an over- or underestimate 

of the prevalence of iron deficiency in populations with downstream effects on public health 

resources. Imputation may be a practical and reliable approach for addressing CRP <LOD.

In our data, overestimates ranged as high as 4.7 p.p. and underestimates as low at −2.7 p.p. 

when using listwise deletion of CRP <LOD. These differences can move estimates of the 

magnitude of the public health problem from one category to another, impacting the policies, 

interventions, and resources that are dedicated to improving iron status.

In the BRINDA equation, the slope of the relationship of CRP and AGP to ferritin 

were altered by listwise deletion or imputation of CRP <LOD. The changes were more 

pronounced among datasets with a high burden of inflammation or high proportion of CRP 

<LOD. Manipulation of the lowest decile where the proportion of CRP <LOD exceeds 10% 

raises the potential need for external reference deciles for all population groups.

Multiple imputation is considered the gold standard for addressing missing data and should 

be used where the technical capacity permits. Pooled results from 29 surveys showed 

that single imputation of a uniform random number bounded by 0 and the LOD may 

be a feasible alternative for addressing CRP <LOD in the BRINDA approach and yields 

reliable estimates that are consistent with multiple imputation. A random number approach 

is appropriate because the missingness of CRP <LOD is bounded and denotes a ‘healthy’ 

status with respect to the BRINDA inflammation correction. This approach would not 

address missingness in the distribution of CRP exceeding the LOD.

At least one other study has attempted to address the issue of left-censored inflammatory 

biomarkers in regression correction of iron deficiency (33). Though validated only on 

a small sample of SAC, the authors’ probability method appears robust but has several 

disadvantages including its complexity, lower precision relative to the BRINDA method, and 

inability to provide individual-level inflammation-adjusted ferritin for subsequent analyses, 

such as iron deficiency anemia or individual-level control for confounding (33).

The present study is strengthened by its use of large and diverse datasets drawn from a 

commonly used laboratory for population-based micronutrient status assessments using a 

single assay to reduce variability from laboratory methods. While this enabled isolation of 

the research question to the performance of imputation approaches under a single LOD, 

this limited our understanding of each approach’s performance if the LODs were increased 

or decreased, which may need further investigation. The analysis was conducted within 

populations with broadly differing burdens of inflammation, strengthening the applicability 

of findings. While primarily applicable to inflammation regression correction, these findings 

may be applicable to other inflammation correction approaches if only to caution against 

listwise deletion of values <LOD.

This study is limited by the unknowable truth of left-censored values which may differ 

from multiple imputation against which our approaches were tested. Additionally, it was 

not feasible to test every possible method of imputation forcing us to limit the number of 

approaches.
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Population-level micronutrient surveys suffer from several potential errors that can produce 

bias from selection and non-response to measurement errors. While this analysis finds that 

several imputation approaches to CRP <LOD are relatively consistent, our results highlight 

that there is potential for bias in the analysis of inflammation-adjusted iron status if standard 

approaches are not taken. Multiple imputation may be used to address left-censored data, 

and random number single imputation may be a consistent, simple, and reliable solution for 

CRP <LOD within a diverse set of population parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Deviance and Reliability of Inflammation-Adjusted Mean Serum Ferritin 
Concentration under Differing Analytic Approaches for C-reactive Protein (CRP) Less Than 
the Limit of Detection (LOD) Within 29 Surveys Across 7 Countries (n=33,053)
LOD for CRP=0.05 mg/L. The dotted reference line at 0 indicates the estimated mean 

serum ferritin adjusted for inflammation using multiple imputation within each survey and 

population group. Points and error bars represent the deviance of each approach from the 

multiple imputation estimate within each survey and population group with 95% confidence 

intervals. The polygon represents the mean deviance of all surveys using the labelled 

approach. Test for differences by analytic approach (subgroup differences): QM=20.19, 

df=5, p<.001.
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Figure 2: Deviance and Reliability of Inflammation-Adjusted Prevalence of Iron Deficiency 
under Differing Imputation Analytic Approaches for C-reactive Protein (CRP) Less Than the 
Limit of Detection (LOD) Within 29 Surveys Across 7 Countries (n=33,053)
LOD for CRP=0.05 mg/L. The dotted reference line at 0 indicates the estimated prevalence 

of inflammation-adjusted iron deficiency using multiple imputation within each survey and 

population group. Points and error bars represent the deviance of each approach from the 

multiple imputation estimate within each survey and population group with 95% confidence 

intervals. The polygon represents the mean deviance of all surveys using the labelled 

approach. Test for differences by analytic approach (subgroup differences): QM=3.59, df=5, 

p=0.61.
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